406 research outputs found

    PSY49 THE WILLINGNESS TO PAY TO MINIMIZE CHRONIC PAIN

    Get PDF

    Kinetics of an argon inductively coupled plasma

    Get PDF

    On the origin of interface states at oxide/III-nitride heterojunction interfaces

    Get PDF
    The energy spectrum of interface state density, D-it(E), was determined at oxide/III-N heterojunction interfaces in the entire band gap, using two complementary photo-electric methods: (i) photo-assisted capacitance-voltage technique for the states distributed near the midgap and the conduction band (CB) and (ii) light intensity dependent photo-capacitance method for the states close to the valence band (VB). In addition, the Auger electron spectroscopy profiling was applied for the characterization of chemical composition of the interface region with the emphasis on carbon impurities, which can be responsible for the interface state creation. The studies were performed for the AlGaN/GaN metal-insulator-semiconductor heterostructures (MISH) with Al2O3 and SiO2 dielectric films and AlxGa1-x layers with x varying from 0.15 to 0.4 as well as for an Al2O3/InAlN/GaN MISH structure. For all structures, it was found that: (i) D-it(E) is an U-shaped continuum increasing from the midgap towards the CB and VB edges and (ii) interface states near the VB exhibit donor-like character. Furthermore, D-it(E) for SiO2/AlxGa1-x/GaN structures increased with rising x. It was also revealed that carbon impurities are not present in the oxide/III-N interface region, which indicates that probably the interface states are not related to carbon, as previously reported. Finally, it was proven that the obtained D-it(E) spectrum can be well fitted using a formula predicted by the disorder induced gap state model. This is an indication that the interface states at oxide/III-N interfaces can originate from the structural disorder of the interfacial region. Furthermore, at the oxide/barrier interface we revealed the presence of the positive fixed charge (Q(F)) which is not related to D-it(E) and which almost compensates the negative polarization charge (Q(pol)(-))

    Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration

    Get PDF
    While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene–microbiome associations that may influence disease outcomes

    Riemann-Cartan Space-times of G\"odel Type

    Full text link
    A class of Riemann-Cartan G\"odel-type space-times are examined in the light of the equivalence problem techniques. The conditions for local space-time homogeneity are derived, generalizing previous works on Riemannian G\"odel-type space-times. The equivalence of Riemann-Cartan G\"odel-type space-times of this class is studied. It is shown that they admit a five-dimensional group of affine-isometries and are characterized by three essential parameters ,m2,ω\ell, m^2, \omega: identical triads (,m2,ω\ell, m^2, \omega) correspond to locally equivalent manifolds. The algebraic types of the irreducible parts of the curvature and torsion tensors are also presented.Comment: 24 pages, LaTeX fil

    Non-Born-Oppenheimer calculations of the lowest vibrational energy of HD including relativistic corrections

    Get PDF
    In this work we report variational calculations of the two lowest vibrational states of the HD molecule within the framework that does not assume the Born-Oppenheimer BO approximation. The nonrelativistic energies of the states were corrected for the relativistic effects of the order of 2 where = 1 c , calculated as expectation values of the operators representing these effects with the nonrelativistic non-BO wave functions. The non-BO wave functions were expanded in terms of the one-center explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance. The v=0→1 transition energy obtained in the calculations is compared with the previous calculations, as well as with the transition frequency obtained from the experimental spectra. The comparison shows the need to include corrections higher than second order in to further improve the agreement between the theory and the experimen

    Sustainable Forest Management Preferences of Interest Groups in Three Regions with Different Levels of Industrial Forestry: An Exploratory Attribute-Based Choice Experiment

    Get PDF
    The challenge of sustainable forest management is to integrate diverse and sometimes conflicting management objectives. In order to achieve this goal, we need a better understanding of the aspects influencing the preferences of diverse groups and how these groups make trade-offs between different attributes of SFM. We compare the SFM preferences of interest groups in regions with different forest use histories based on the reasoning that the condition of the forest reflects the forest use history of the area. The condition of the forest also shapes an individual’s forest values and attitudes. These held values and attitudes are thought to influence SFM preferences. We tested whether the SFM preferences vary amongst the different interest groups within and across regions. We collected data from 252 persons using a choice experiment approach, where participants chose multiple times among different options described by a combination of attributes that are assigned different levels. The novelty of our approach was the use of choice experiments in the assessment of regional preference differences. Given the complexity of interregional comparison and the small sample size, this was an exploratory study based on a purposive rather than random sample. Nevertheless, our results suggest that the aggregation of preferences of all individuals within a region does not reveal all information necessary for forest management planning since opposing viewpoints could cancel each other out and lead to an interpretation that does not reflect possibly polarised views. Although based on a small\ud sample size, the preferences of interest groups within a region are generally statistically significantly different from each other; however preferences of interest groups across regions are also significantly different. This illustrates the potential importance of assessing heterogeneity by region and by group

    Activity profiles of elite wheelchair rugby players during competition

    Get PDF
    To quantify the activity profiles of elite wheelchair rugby and establish classification-specific arbitrary speed zones. Additionally, indicators of fatigue during full matches were explored. Methods: Seventy-five elite wheelchair rugby players from eleven national teams were monitored using a radio-frequency based, indoor tracking system across two international tournaments. Players who participated in complete quarters (n = 75) and full matches (n = 25) were included and grouped by their International Wheelchair Rugby Federation functional classification: group I (0-0.5), II (1.0-1.5), III (2.0-2.5) and IV (3.0-3.5). Results: During a typical quarter, significant increases in total distance (m), relative distance (m·minˉ¹), and mean speed (m·sˉ¹) were associated with an increase in classification group (P < 0.001), with the exception of group III and IV. However, group IV players achieved significantly higher peak speeds (3.82 ± 0.31 m·sˉ¹) than groups I (2.99 ± 0.28 m·sˉ¹), II (3.44 ± 0.26 m·sˉ¹) and III (3.67 ± 0.32 m·sˉ¹). Groups I and II differed significantly in match intensity during very low/low speed zones and the number of high-intensity activities in comparison with groups III and IV (P < 0.001). Full match analysis revealed that activity profiles did not differ significantly between quarters. Conclusions: Notable differences in the volume of activity were displayed across the functional classification groups. However, the specific on-court requirements of defensive (I and II) and offensive (III and IV) match roles appeared to influence the intensity of match activities and consequently training prescription should be structured accordingly

    Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon

    Full text link
    Quantum Monte Carlo (QMC) techniques are used to calculate the one-body density matrix and excitation energies for the valence electrons of bulk silicon. The one-body density matrix and energies are obtained from a Slater-Jastrow wave function with a determinant of local density approximation (LDA) orbitals. The QMC density matrix evaluated in a basis of LDA orbitals is strongly diagonally dominant. The natural orbitals obtained by diagonalizing the QMC density matrix resemble the LDA orbitals very closely. Replacing the determinant of LDA orbitals in the wave function by a determinant of natural orbitals makes no significant difference to the quality of the wave function's nodal surface, leaving the diffusion Monte Carlo energy unchanged. The Extended Koopmans' Theorem for correlated wave functions is used to calculate excitation energies for silicon, which are in reasonable agreement with the available experimental data. A diagonal approximation to the theorem, evaluated in the basis of LDA orbitals, works quite well for both the quasihole and quasielectron states. We have found that this approximation has an advantageous scaling with system size, allowing more efficient studies of larger systems.Comment: 13 pages, 4 figures. To appear in Phys. Rev.
    corecore